AD-A169 774 CARRIER-SENSE STACK ALGORITHMS FOR NULTIPLE RCCESS
COMMUNICRTION CHANNELS(U) CONNECTICUT UNIV STORRS DEPT
OF ELECTRICAL ENGINEERING AND CO.. N 0S

UNCLASSIFIED UCT/DEECS/TR-86-3 NO9914-83-K-9347 F/G 9/2

D C L MERAK




= & &
1

s £E

]

= mu i

PRI
et

aa

Ly

YRARY! KA
v




Pkl b i e 4

dAL Y s

L SRR

AD-A169 774

OTIC FILE COP

The University of Connecticut

SCHOOL OF ENGINEERING
Storrs, Connecticut 06268

TECHNICAL REPORT UCT/DEECS/TR-86-3 Rocan
NTIS
ONR CONTRACT NUMBER NOOO14-85-K-0547 | p.;

Un
WORK UNIT NUMBER NR 662-006 7o
March 1986 o
By-.,_§
Diut
Aval

unle

LA 5»»

(_"" e B e

;. JuL1 41986

Department of E

Electrical Engineering and Computer Science

—~—

Y S R

tole do o L TTTTT e

O ! ‘. S e \“‘-'4\._
far D c T M ieoved

; .o v
distrir,. 1oy | elri. g e |
N"‘—-;—‘:“ .‘.“'
-hh.““_.‘__.—‘_‘

86 v 14 053




Sat N ¥ ) WA T I T K N Qu N R O W, R & PR A R A gRE g ap SRR N SR SR AR i e TR At

o

N

Ce

N

) "Carrier-Sense Stack Algorithms for

M Multiple Access Communication Channels”

; by

N Lazaros Merakos

.

: t CUALITY

INSPECTED

- 1

TECHNICAL REPORT UCT/DEECS/TR-86-3 Accession For

T NTIS  cmAED
ONR CONTRACT NUMBER NOOO14-85-K-0547 | piid 1.s

Unnnnoired
WORK UNIT NUMBER NR 662-006 me’x;,U.\,i;‘,n_m_

March 1986 ;g,:g
Distﬁi“v* ,

w ‘ v .
RO TP R S N

< bastrd et e -
: Availability Ccles !
: — 7{Avou Sicjor o
) Dist Specinl
’ \
; Ny
. Principal Investigators G* [
X Prof. Panayota Papantoni-Kazakos
’ Prof. Lazaros Merakos
. ) “\T“E ey
G RN
. University of Connecticut LEOCOTE TS
. Electrical Engineering and Computer Science Department iy
N U-157, 260 Glenbrookst ST ST TS £
. Storrs, CT 0626 e ' '
v ’ %{.w" o
&
3 Distribution: Y
L Scientific Officer i T
- Administrative Contracting Officer . S ey

Director, Naval Research laboratory
Defense Technical Information Center




ava s u B )

i -

(N3

-

-

-

st

n.' -
wte e

v

N

SERIE

4

'-‘.‘.'.-" . .o
A ST ST R T L

Carrier-Sense Stack Algorithms for Multiple Access Communication Channels

C s Lazaros Merakos

Electrical Engineering and Computer Science Department
University of Connecticut

Abstract

We consider the random multiple access of a collision-type, packet-switched
channel, for the Poisson user model in a local area network environment, where
"carrier sensing" techniques are possible due to small propagation delays. We
propose and analyze random access algorithms that are representative of a new class
of stable algorithms with "Iimited sénsing; and "free acceséd‘characteristics.
"Limited sensing" algorithms require that users sense the channel only while they
have a packet to transmit, and, therefore, they have practical advantéges over
algorithms that require continuous channel sensing. The "free access" characteris-
tics of the proposed algorithms simplify their implementation, since newly arrived
packets are transmitted upon arrival, provided that the channel is sensed idle,
Utilizing the regenerative character of the stochastic processes that are
associated with the random access system, we derive lower bounds on the maximum
stable throughput, ard tight upper and lower bounds on tﬁe induced mean packet
delay. The proposed algorithms are easy-to-implement, and they combine
inherently stable operation and high performance with modest channel sensing

requirements. - { -

This work was supported by the Office of Naval Research under contract
no. NO0O14-85-K-0547.
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1. INTRODUCTION

. Local area networks (LANs) are designed to support high bandwidth communications
among a large number of users within a local geographical area. In the case of a
large population of independent, bursty users this service can be provided at a low
cost per user, if the LAN employs a single, packet-switched, collision-type, multiple
access channel using a communications medium such as coaxial cable, optical fibre, or
radio multi-access channel. The sharing of the common channel by the contending users
is coordinated by a distributed control random access algorithm (RAA).

When the end-to-end propagation delay of the LAN is small, as compared to the
transmission time of a packet, then the users can determine the channel activity in
a short amount of time, through "channel sensing" operations. Depending on the
communication medium used, users may be able to determine whether the channel is idle

or busy,(i.e., the carrier-sensing environment), or even to discriminate between

successful and interfering transmissions while they are in progress,(i.e., carrier-

sensing with collision detection).

The earliest and most well known RAAs for the carrier-sensing environment belong
to the class of ALOHA-type algorithms, such as the non-persistent CSMA and CSMA-CD
algorithms and their variations,[1-3]. Ethernet,(4],1is a prominent example of a LAN
using an algorithm from this class. ALOHA-type algorithms are easy to implement, but
they have inherent long-term stability problems, unless retransmission control
algorithms are employed to support them,[5].

A relatively new class of random access algorithms is the class of Tree algorithms
[6-10). These algorithms gather information about the history of the channel activity
(feedback information), and use it to resolve collisions by employing a tree-search-
type collision resolution procedure. Tree-type algorithms, which are extensions of

the Tree algorithms to the carrier-sensing environment, have been analyzed in (11,




12]. These algorithms have continuous channel sensing and blocked-access character-

istics; that is, all users are required to inspect the feedback information by sensing
tﬁé'channel constantly even if they have nothing to transmit, and newly arrived packets
are blocked until the on-going collision (if any) has been resolved. These algorithms
are inherently stable, perform better than ALOHA-type algorithms, and some of them
guarantee first come-first serve delivery of packets. However, the continuous channel
sensing requirement, which is an integral part of their operation, makes the Tree-
type algorithms unsuitable for networks where activation of new users and user mobility
disrupt the feedback sensing continuity. In addition, some of the more efficient Tree-
type algorithms are sensitive to errors in the feedback. information caused by channel
noise or by actions of higher level protocols discarding packets already in the system
{10, 11].

A nev trend towards the design of RAAs that could combine stable operation and
high performance with modest feedback requirements and robustness in the presence of
feedback errors started with the introduction of the "Stack" algorithm by Tsybakov
and Vvedenskaya [12], and its variations [13-16]. The new class of algorithms has

limited channel sensing and free-access characteristics. In contrast to Tree algorithms,

the algorithms of this class require that a user sense’ the channel only while he has
a packet to transmit (limited channel sensing); furthermore, newly arrived packets
access the channel freely, independently of any collision resolution process that
might be in progress. In addition to being practically appealing, the algorithms of
this class are less sensitive to feedback errors, as compared to Tree algorithms, for

the same channel and user model [16].

The above considerations have motivated our interest in limited channel sensing
algorithms for the carrier-sensing environment. In this paper we propose and analyze
a simple such algorithm, which is representative of the above class. Utilizing the

regenerative character of the stochastic processes that are associated with the random
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access channel, we derive lower bounds on the maximum stable throughput, and tight
upper and lower bounds on the mean packet delay induced by the algorithm. These
results indicate that the proposed algorithm has mean delay~throughput characteris-
tics that are uniformly better than those of the optimally controlled non-persistent
CSMA and CSMA-CD algorithm [5]), and comparable to those induced by the extension of
the most efficient Tree algorithm to the carrier-sensing environment [12]. More
important, however, is the fact that the proposed algorithm combines high perfor-
mance and inherently stable operation with limited channel sensing and low opera-
tional complexity.

The organization of the paper is as follows. Section 2 introduces the user and
channel model.Section 3 states the algorithm. In section 4 we explain some of its
important properties, and we evaluate its output rate. In section 5 we develop
bounding techniques that yield arbitrarily tight upper and lower bounds on the mean
packet delay induced by the algorithm, and a lower bound on the algorithm's maximum
stable throughput. In section 6 we present a generalized version of the algorithm
introduced in section 2, and we make some performance comparisons. Finally, in

section 7 we draw some conclusions.
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2. USER AND CHANNEL MODEL

We assume that an infinite population of independent, bursty, packet-transmitting
userg.share a common communication channel. We model the packet arrival process as
homogeneous Poisson with intensity A packets per unit of time. For convenience, we
assume that packets are of fixed length, and we take the packet transmission time to
correspond to our unit of time. We also assume that the propagation delay between
any two users in the network is at most o, where O < 1.

For simplicity in analysis, we assume that the time axis is slotted, where the
slot size is equal to the maximum propagation delay a. Users may initiate a packet
transmission only at the beginning of a slot.

We consider limited channel sensing and ternary feedback. That is, each user
senses the channel continuously, from the time instant when he generates a packet, to
the time instant when this packet is successfully transmitted, and he can distinguish
without error among the following channel states: a) idle (no transmission) b) success
(transmission of a single packet) c¢) collision (simultaneous transmission of at least
two packets). We assume that a collision results in complete loss of the information
included in all the involved packets; thus, retransmission is then necessary.

Without loss of generality, we assume that a user who senses the channel can
distinguish between transmission (success or collision) and no transmission (idle)
insc.anteously.1 However, the time required to distinguish a collision from a success-
ful transmission (collisjon detect time) is a system characteristic whose value depends
on the maximum propagation delay, the transmission medium, the packet encoding and
modulation techniques, and the method used to detect collisions (21, 22].

In cable networks like Ethernet, because of the physical properties of the cable,
What this means

it is possible for a user to listen to the cable while transmitting.

is that if more than one users start to transmit at the beginning of a slot, they will

shortly determine that interference is in process and they will, subsequently, abort

In channels where this sensing operation cannot he considered instantancous, the slot

size will be
ceiver to

the sum of the maximum propavation delav and the time required by a re-
reliably distinguish hetween transmission and no transmission.
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their transmissions.

Given that a collision occurs, the time until all transmitting users stop trans-
mission will be called the "conflict truncation time" and it will be denoted by 8.
The value of B depends on the implementation. In synchronous Ethernet-type networks,
for example, the collision truncation time can be represented as the sum of three
terms, B =y + § + {. The Y term represents the propagation delay before interference
reaches all transmitting users; clearly, Y is less than or equal to the maximum pro-
pagation delay a. The § term represents the time it takes for a user to determine
interference once the latter has reached him. The [ term denotes the time spent for
a collision consensus reinforcement mechanism, by which a user, experiencing inter-
ference, jams the channel by transmitting additional bits, (usually, in the form of
encoded phase violations), to ensure that all users who sense the channel detect the
collision. The values of § and { depend on the implementation,and can be as small
as a few bits transmission time. Here we assume that a < 8 < 1. fﬁ addition, we
assume that the detection of collisions is performed by the receiver (receive mode
collision detect, IEEE Standards Committee, Project 802, [23]). This means that, in
addition to transmitting users, non-transmitting users have, also, the capability to
detect collisions, provided that they are sensing the channel during the collision.

In contrast to the cable network users, the users is some local networks, such
as packet radio networks, cannot listen to the channel while they are transmitting.
If a collision occurs, then the transmitting users will detect the interference not
earlier than the end of their transmission; thus, in this case the conflict truncation
time is usually equal to the packet transmission time; i.e., B =1.

In summary, the two important parameters of the carrier-sense channel
considered here are the maximum propagation delay &, and the conflict truncation time

3. The performance of the algorithms to be presented in this paper will be evaluated

for values of « and . such that a < 1 and x < f < 1. This range of parameters models
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adequately well a substantial class of the cable and radio networks that use carrier-

sense channels.

”20 facilitate the comparison of the performance of the algorithms to be presented
here to that of other algorithms found in the literature, we assume that both the
packet transmission time and the conflict truncation time are integer multiples of a
slot; that is, we assume that the packet transmission time is equal to T slots, where

T =1/a > 1, and that the conflict truncation time is equal to R slots, 1 <R<T,

where R = B/a.
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3. THE ALGORITHM AND ITS GENERAL OPERATION

In this section we describe a limited channel sensing algorithm that allows
usere to communicate with each other in a carrier-sensing environment satisfying the
assumptions specified in the previous section.

The algorithm is implemented by each "busy" user in a distributed fashion. A
user is defined to be busy from the moment it generates a new packet for transmission
until the moment after the same packet is successfully transmitted; otherwise, the
user is said to be idle. The time instant that a user generates a packet, (i.e.,
when he becomes busy), he starts sensing the channel and he simultaneously initializes
the algorithm; he continues to sense the channel until the successful transmission
of his packet, (i.e., until he becomes idle). Upon the occurrence of this event, he
stops sensing the channel and simultaneously he terminates the algorithm.

For the implementation of the algorithm the user uses a counter, whose indication
at time t is denoted by CIt‘ The indications of the counter dictate the operation of
the algorithm, which is described as follows:

Rule 1 -- Counter initialization

Let the user generate a new packet at time tye and let k( denote the first slot

boundary, after t Also, let kl denote the first slot bouhdary after ty» at which

0"
the user senses the channel idle. Then, at kl, the user initializes his counter as
follows:
1 ; if kl = ko
CIkl =
M if k1 £ kg
where M is a random variable uniformly distributed on {1,2,...,m}, and the integer

m, m>1, is an algorithmic parameter.

Rule 2 -- Transmission rule

The user transmits at the beginning of the slots at which his counter indication

equals "1,
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Rule 3 -- Counter updating

After the user has initialized his counter he updates it only at the slot
boundaries at which he senses the channel idle. Let kl’k2"" denote these slot

boundaries in accordance with their occurrence. Let the user be busy at ki(i=1’2'3"")'

with CI}j > 1. Then, at time ki+l he updates his counter as follows:
i

a) If CI > 1, then
1

), he senses the channel idle

CIki—l if, during (ki,ki+l

CI =/ CIy +m-1 if, during (k. ,k
k. i 1
i+l

i+l)’ he senses the channel busy with a

successful transmission

CIki+m+”’l if, during (ki’ki+1)’ he senses the channel busy with a

collision

where the integer n,n > 2, is an algorithmic parameter,

[}

b) If CIy . 1 and, during (ki’k )}, he senses the channel busy with a collision,
i

i+l
then

Cl =m+ J
ki+1

where J is a random variable uniformly distributed on {1,2,...,n}

K ), he senses the channel busy with a successful

i
transmission, then his packet has been successfully transmitted and the user termi-

If CI = 1 and, during (ki'ki+l

nates the algorithm.

The integers m and n used in the description of the algorithm are design
parameters subject to optimization for throughput maximization; their optimum values
depend on the values of the system parameters & and B, and they will be given later.

The general operation of the algorithm is perhaps better illustrated by intro-
ducing the concept of a "stack'". A stack is an abstract storage device consisting
of an infinite number of cells, labelled 1,2,3,... . The number of packets that a

cell can accommodate is unrestricted. At each time t Jdurinyg the operation of the

algorithm, users with counter value CIt = r can be thourht of as having stored their )




packets in cell #r of the stack. A packet is transmitted whenever it enters cell

#1 of the stack. Packets are, eventually, successfully transmitted after moving

through the cells of the stack in accordance with the algorithmic rules described

above.

The execution of the algorithm by each busy user induces on the time axis an

alternate sequence of transmission periods (successful or unsuccessful) and idle

periods. However, this channel activity reaches each of the users, who sense the

channel, with a different amount of delay, depending on their distance from the

transmitting users. For convenience, consider an arbitrary user, called user X, and

assume that he senses the channel continuously from the beginning of the operation of

the system. Let ti(i=0,1,2,...) denote the consequtive slot boundaries at which user

Y, 1i=0,1,2,..., will be called the

X senses the channel idle. The interval [t., t,.
i i+l

i-th algorithm step. If during an algorithm step the channel is idle, busy with a

successful transmission, or busy with a collision then the algorithﬁ step will be

called idle, successful, or unsuccessful, respectively. As it can be seen from
figure 1 an idle algorithm step lasts for one slot; a successful algorithm step lasts
for T+l slots, T slots to place the packet onto the channel and one slot for this
packet to clear the channel due to propagation delay; an unsuccessful algorithm step
lasts for R+l slots, R slots for the transmitting users to detect the collision and
abort their transmissions and one slot for the packet fragments to clear the channel

due to propagation delay. Thus, the length of the i-th algorithm step, measured in

units of time, is given by

‘ o if the i-th algorithm step is idle
t, -t = ( 1+a if the i-th algorithm step is successful
a+B if the i-th algorithm step is unsuccessful
The description of the peneral operation of the algorithm and its analysis are
preatly facilitated if one considers how the state of the stack evolves at the

beginning of consequtive alporithm steps.  In tipure 2 the stack is imbedded at [i
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and ti+1 to show how packets move through the cells of the stack,(i.e.,how users
update their counters),as well as to show how new packets arriving between ti and
ti+1.place themselves in the cells of the stack, (i.e.,how users initialize their
counters), depending on whether the algorithm step was idle, successful or unsuccess-
ful.

As it can been seen from figure 2, the operation of the algorithm is based on
the "divide and conquer' philosophy that characterizes most RAAs. More specifically,
the algorithm spreads the incoming traffic into the first m cells of the stack to, a
priori, avoid collisions, when the new traffic is heavy,(e.g., after a successful
transmission). Furthermore, to resolve collisions, it uniformly splits the group of
collided packets into n cells of the stack. The parameters m and n allow the
algorithm to adapt its operation to the given values of the network parameters a
and B. If, for example, o << B, then m and n should be large to take advantage of
the much lower '"cost" (wasted channel time) of an idle algorithm step (a units of
time), as compared to that of an unsuccessful algorithm step (B+a units of time).
Finally, we point out that users with newly arrived packets initialize their
counters only on the basis of whether the channel is busy or idle (see rule 1).

This is desirable, since some of them may not have sufficient time to reliably
distinguish a successful transmission from a collision , before the channel goes

idle.

The algorithm described in this section will be referred to as the LAN stack

algorithm (LANSA).
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4, RENEWAL PROPERTIES AND OUTPUT RATE

To analyze the performance of the LANSA we introduce the concept of a session.
A session is a sequence of consecutive algorithm steps that begins and ends at two

consecutive algorithm renewal instants. These instants are denoted by Rn’ n>1,

and are determined by means of a conceptual marker that operates on the stack. The
first session begins with the beginning of the first algorithm step, at Rl = ty,
with the marker placed at cell #2. During the session, the marker's position in the

stack is adjusted at the beginning of each algorithm step. At t;» let the marker be

1

at cell #Ci, Ci > 2; then, at ti+1 the marker is placed at cell #Ci+1’ with
Ci -1 if the ith algorithm step is idle
Ci+1 = Ci+m—1 if the ith algorithm step is successful

Ci+m+n-l if the ith algorithm step is unsuccessful

where the integers m > 1, n > 2 are as defined in the LANSA description.
The second renewal instant, RZ’ is the instant at which the marker drops to

cell #1 for the first time, that is, R, = min {ti > Rl : Ci = 1}; this signifies the

2
end of the first session. Instantaneously, at Rz, the marker is then adjusted to

cell #2 and the second session begins. This process continues indefinitely.

A session starting with k packets in the first cell of the stack is called a

session of multiplicity k, k > 0. Note that if at s i > 1, the marker is at cell
#r of the stack then, from the rules of the algorithm and the marker's instructions,
it is deduced that cells #j, j > r, are necessarily empty. Thus, when a session
begins, all cells are empty except for ceil #l, which is occupied by the k new
packets that arrived during the last algorithm step of the previous session.

The time from the instant that a session begins until it ends is the length of
the session. The session with multiplicity O is called the empty session, and has

length equal to «, (i.e., one slot). A non empty session has a random length that

depends on the arrival process of new packets during the session, and on the rules
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of the algorithm. 1In view of the independent and stationary increments property of
the Poisson process that models the input traftic, it tollows that the session
lengths will be independent, identically distributed (i.i.d.) random variables, if

the session multiplicities are ji.i.d. random variables. Note that a session ends

& a.n 8 S

when the marker drops to cell #1 for the first time. Then, since the marker's

position is decremented only after an idle algorithm step (see marker's instructions),

s e 8 4 b &

it follows that the last algorithm step of a session is always idle. Thus, the

session multiplicities are i.i.d. random variables with distribution

r

P(K=k) = p, & (A)® exp (-Aa)/k!, (1)

k

't .l‘ *‘l 'l .l

and, therefore, the session lengths are i.i.d. random variables as well.

a. Output Rate

Let Ll’ LZ’ ... denote the lengths of successive sessions; then,
R. =a3; R =R, + Li , 1=1,2,...

define the algorithm renewal instants. The sequence {R_}

i}iz} forms a delayed renewal

_ process, since Ll, LZ' ... are i.i.d. non-negative random variables.

. Let
n
I §
u{n) = tn EI(OJ.)
j=1

JA)
where I(Oj) denotes the indicator function of the event Oj = {successful transmis-

sion during the jth algorithm step}. Thus, u(n) represents the average fraction of
time that successful packet transmissions have occurred on the channel by instant th:

Consider now an arbitrary session, say the ith, and let Si denote the random

A oW

number of packets that were successfully transmitted during the course of the session.

Clearly, Si depends on Li' but the pairs (Li'si)’ i > 1, are independent and

‘.‘I

identically distributed. 1lLet § = E(Si), and L = E(Li)' The expected number of

‘-
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successful transmissions, S, during a session can be thought of as an average reward

earned during the session. With this in mind, we state the following result from

the theory of renewal reward processes (see, for example, {18, sec. 3.6]).

Theorem 1 If S < ®, and L < @, then there exists a real number, y, such that

Lim y(n) = £im E(u()) = S . M with probability 1

noo n-*oo L

The above theorem states that the (expected) lone-run average number of success-
ful transmissions per unit time is just the exnecred number of successful transmis-
sions during a ses=ion, divided by the mean session length, provided that both S and
L are finite. The quantity u is the channel's output rate.

Consider again the 1th session; since sessions always end with an idle algorithm
step, and at both Ri and Ri+1 there are no blocked users present in the system, it
follows that the number, Si, of successfully transmitted packets (if any) during the

ith session is just the number of packets arrived at the system during the time

interval [Ri—a, R ); all such packets will be called packets associated with

i+

session i. Now, if we let Mi 4 Li/a = (R —Ri)/a denote the length of the ith

i+l
session measured in slots, then
i

S, =
i

M,
A, (2)
- J

j=1
where Aj denotes the number of arrivals in the interval [Rn+(j—2)a, Rn+(j-1)a)
Clearly, {Aj}j>1 is a sequence of independent Poisson random variables, with intensity
oaX. Furthermore, M

is a stopping time for {Aj} since the event {Mi=m} is

i

i21

independent of Am+l’ Am+2' «e. . If we assume that E(Mi) < o, then, taking expecta-

tions in (2), and applying Wald's lemma, ([17], p. 59) yields
S = E(S)) = E(Mi)E(Aj) = AL (3

since E(Aj) = aA, and E(Mi) = L/a, from the definition of Mi' In view of (3),

theorem 1 vields
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. Corollary 1. If L <, then u = A; that is, the LANSA maintains the rate if the

mean session length is finite.

ce a2

In the rest of this section we investigate the conditions under which L < =,

and we establish bounds on L.

g
N b. Mean Session Length
N Consider a session of random multiplicity, K > 0, and let LK denote its random
length. If we let Lk = E(£K|K=k), then the mean session length is given by
o o0
. _ 4
™ L E Pk Lk (4)
) k=0
o
. where P is as given by (1).
- We proceed now with the investigation of the region of convergence of the series
. given in (4), by deriving and studying a system of equations for the mean length of
?
: a session of specified multiplicity, Lk, k > 0. We first state the following.
§ Proposition 1. The length, (k, of a session with specified multiplicity k > 0
- satisfies the following system of equations:
- o1 if k=0
. m
. l+a+ & ¢ if k=1 (5)
: be = ST
N m n
: Brat T L, 4+ I £ L, if k22
o j=1 i =l b]
: where X, ,...,X , Y. ,¢..,Y , Z,,...,2 are independent random variables, which are,
) 1 m 1 m 1 n
i also, independent of the random variables Kl""’Kn' The corresponding distributions
Ca
. are as follows: P(X.=1) = s. & O ) exp(=2 )/ (1), P(y.=1) = r. & (A ) lexp(=2 )/ (i1
' ] i s’ s T j i r r ’
. 1<j-m, where L = (m~Leya, and ‘T (Bm’lm)\; P(/,i"i) = p,. as defined in (1,

Tog iy
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A 1°72 n i=1
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Proposition 1 follows directly from the LANSA specifications, and its proof is

omitted. Taking expectations in (5) yields the following proposition.

Proposition 2. The mean session lengths, {Lk}k>0’ satisfy the following infinite

dimensional system of linear equations:

1 AN W S«

o
o= 5 ox =D a x tg k2l (6)
i=1

. where

a =ms

1,1 i ak,i=mri + nqk’i, k>1 g1=1+(1+mso)a; 8 = B+(l+mr0+nqk’0), k>1

whete1

A -1 A (k) i k-1 Ny
= * = —
qk,i Py bi(k,n ), bi(k,p) (1) p (1-p) , and S T Py are as defined in

proposition 1.

Formally, the system of equations (6) always has an "infinite" solution

LN

Xy = % X =% k > 1. The following theorem specifies a sufficient condition under

which system (6) has a solution, {x, } with 0 < x

k' k>0’

1 N AN

K <+ ® for all 0 < k < =, which

coincides with the sequence, {Lk}k>0’ of the mean session lengths induced by the LANSA.

. Theorem 2

(i) Given a,8,m>1, n>2, system (6) has a solution, {yk}k>0’ such that

_', Yo = O 0 < b'k-c' iykf_bk—c, k >1

if A < Ao(a,B;m,n); where Ao(a,B;m,n) is the unique solution of the equation

1. * denotes convolution




t 4 D

1-(1+ma) A B+(min)a =0

l—m(l-so) - A (l—ro)m+(1-q2’0)n—l 7

over the interval [0,(l+ma)_1), and where the coefficients b,b',c, and ¢' are bounded
functions of A.

(ii) For every AE[O,AO(Q,B;m,n)L Lk =y for all k > 0.

The proof of theorem 2, and the expressions for the coefficients b,b',c, and c'
can be found in the Appendix.

Given a,B,m,n, let Ae[O,Ao(a,B;m,n)); then, from theorem 2, we have

b' k=c' <L <bk-c, k>1 (8)

k
Substitution of the above bounds into (4) yields

Lp <L <L <=, for every Ae[O,Ao(a,B;m,n)) , 9)
where Lu = aAb-c + (at+c)exp(-ar) , LZ = aAb"-c' + (a+c")exp(-ar)

Given the network parameters o,B8, let us now define,

A(a,B) Q sup{ko(a,B;m,n)} = Ao(a,B;m*,n*) (10)
m,n

In view of (9), (10), and of corollary 1 we have the following corollary.

Corollary 2. Given a,8,m,n, the LANSA maintains the rate, that is, A = u, for every
AE[O,AO(a,B;m,n)). Given a,B, the LANSA with m = m* and n = n* maintains the rate

for every Ae[0,A(a,B)).

We used numerical search techniques to determine A(a,8). 1In table 1 we give the

values of A(a,B) for representative values of a, and for fB=a, B<0.5, and B=1. 1In the

LEal Rl

* *
same table we also give the values, m , n , of the design parameters m,n that achieve

.. . . & * .
the maximization in (10). As table ! reveals, m” and n" generally increase as a
’ g y
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decreases; this is more prominent in the case where B >> a (bottom left part of the
table). This is an intuitively pleasing result; if the cost of an unsuccessful
algorithm step is much higher than the cost of an idle algorithm step, then, to avoid
colliéions. the algorithm should a priori spread the incoming traffic by increasing

m, and it should split the group of collided packets into more cells by increasing n.

JE Y .Y, .. T eTE—— T

c. Tight Bounds on the Mean Session Length

.

The bounds on L given by (9) are tight enough for small values of A, but they

L St oine. Sidiia
mRTT TS

become loose as A approaches Ao(a,B;m,n). In this subsection we develop a method
for computing bounds on L that are tighter than those given by (9); these new bounds
will be used in the delay analysis of the next section.

Given some finite natural number, N > 1, let us consider the following system

of N linear equations

N
= < ’
Xy :E:ak,i Xy + bk , 1 <k <N, . (11)
i=1
where bk’ 1 < k < N, are non-negative real constants, and ak i’ 1< i <N, 1 <k <N,
4

are as given in proposition 2,
The solution to system (l1) is characterized by the following lemma, whose proof

can be found in the Appendix.

Lemma 1
Given o,B,m,n, let A < Ao(a,B;m,n); then, for every N > 1 and for every given

-1
b, 2 0, 1 <k <N, system (11) has a unique non-negative solution x = (IN—AN) b,

and the matrix (IN_AN)-I has non-negative elements; where2 X = (xl,...,xN)t,

b = (bl"" N Ay (aij) is the (NxN) non-negative, square matrix with
a,, =a, ,, 1L <i<N,1<j <N, and I, is the (NxN) identity matrix.
ij i,] - - - = N

Using lemma 1 we can express the following theorem, whose proof is given in

the Appendix.

2. t denotes transpose




[T & 1

s s B L LA

D W

PN Rl ¢ DAL

SRR NN

»

a s & o &

18
Theorem 3
Given a,B8,m,n, let A < Ao(a,B;m,n); then, for every N > 1

b'k-c’' < Li <L < L: < bk-c , 1 <k <N, (12)

where {L:; 1<k<N}, and {Lk; 1<k<N} are the unique solutions to system (11) with

oo [+ o]
b, =g + L a _.(bi-c), andb, =g + I a . (b'i-c'), respectively.
L kBT g ki
Using the bounds Lt, Lﬁ, for 1 < k < N, and the linear bounds given by (8), for
k > N, in (4) we have
Lz <L X L: , for every AE[O,Ao(a,B;m,n)) (13)
where
N © N
* = u - = - -_C- u
L* = pja + Z p Ly + z p, (bk=c) = L_ Z p, (bk-c-L}) (14)
k=1 k=N+1 k=1
and
N L N
* _ L _ ! T
L} = pya + > P Ly + > P (bk=c) = Ly + 3~ p (Li-b'kc") (15)
k=1 k=N+1 k=1

and where Lu, L2 are as given in (9). Note that, from (12), (14), and (15), we have

*

LZ < LE < L: < Lu. The bounds {LE; 1<k<N}, and {Lﬁ; 1<k<N}, required for the evalua-

tion of L:, and LE, can be obtained by solving finite system (1l1), with b 1<k<N,

K’
as defined in theorem 3. Using N = 10, we solved system (l1), for several represen-
tative values of the network parameters o,B, and for m=m*, n=n*, as given in table
1. The results for (a,8)=(.1,.1) and (a,B8)=(.1l,1) are included in table 2. In
table 3, we give the bounds L:, and Lz, as found by substituting the solutions (L:;
1<k<10}, and {Lﬁ; 1<k<10} into (14), and (15), respectively. Note that the bounds

* . . . . . .
L:. and LC remain extremely tight, (they coincide up to at least the sixth decimal

point), cven for X very close to A(a,3). We should also point out that, bv increasing

the dimensionality N of the finite svstem (11), arbitrarily tight bounds can he obtained.
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5. DELAY ANALYSIS AND STABILITY

Consider the network operating with the LANSA over the time interval [0, + ).
Packe;s arrive at the network at time instants an, n=1,2,..., where 0 < al < az < e
Let the arriving packets be labelled n=1,2,... according to their arrival instant.

We define the delay, Dn’ experienced by the nth packet as the time difference between
its arrival at the transmitter and the instant it is successfully received by the
most remote receiver3,(so that Dn = 140, when the packet is successfully transmitted
beginning at the same moment it arrives at the transmitter). Let the random variable
Ni denote the total number of packets associated with, (. .e., arrived and successfully
transmitted during) the first i non-empty sessions. Let, also, §i denote the number
of packets associated with the ith non-empty session. We have that N0=0,

=N+,

Ni+l i Ti+l’

{Si}i>l is a sequence of i.i.d. random variables. Furthermore, the renewal properties

i=0,1,2,... . The sequence {Ni}i>0 is a renewal process, since

of the LANSA clearly indicate that, whenever a non-empty session ends, the arrival and
waiting-time mechanisms are '"reset' by the next arrival; thus, the process {DN +n}n>1’

i —
for every i > 0, is a probabilistic replica of the process {Dn}n>1' Thus, the

discrete-time process {Dn}n>l is regenerative respective to the imbedded renewal

process {Ni} with common regenerative cycle, S, the number of packets associated

i>0’

with a non-empty session.

S
Next define S = E(§), and f = E(jz: Ui ; note that T represents the mean

i=1

cumulative delay experienced by all the packets of a non-empty session. Using S and
and T we can express the following standard result from the theory of regenerative
processes (see [19, Thm. 2], and [20, Thm. 37}).

Theorem &4

[f (A.1) S is not periodic, with S < and if (A.2) T < « then there exists a

real number D such that

3. This is the worst case, since the propagation delav from the transmitter to the

intended receiver is at most oc.

T R PETRT IS AN
P .
A A A P L P Y S )
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D = Lim n"l
e i=1 e i=1

.

Furthermore, Dn converges in distribution to a random variable q» , and

D = E(Dy) = ¥/§ <

VTS ST LR F A s = - - -

v Thus, under assumptions (A.l) and (A.2), the limiting average, the limiting

expected average, and the mean of the limiting distribution of {vn}n>

1 exist,

coincide, and are finite; their common value, D, represents the mean packet delay
induced by the LANSA. Next we elaborate on the assumptions stated in theorem 3.
From the operation of the LANSA it can be easily seen that § is not periodic. Let
Sk denote the expected number of packets associated with a session of multiplicity

k > 0. Then, noting that S, = 0, we have

0
o o0
< __1 o1 o1
5o 2 P ST T 2 RSk TTmn S (16)
O k=1 % 0 0

Given o,8,m,n, let Acio0, Ao(a,B,m,n)); then, from (3), (16), and theorem 3, it

follows that

S = (1-p0)-l AL<o (17)

Thus, assumption (A.l) is true, if A < Ao(a,B;m,n). We proceed now to show that
this is also true for assumption (A.2).

Consider the nth packet arrival; its delay can be expressed as

P =A +¢C
n n n

A denotes the nth packet access waiting time from the packet arrival instant
to the instant the packet enters the stack for the first time.

C denotes the nth packet contention waiting time from the instant the packet
enters the stack for the first time to the instant it is successfully received
by the most remote receiver.

u,
-,

-
-
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Using the above decomposition of the packet delay, we write the mean cumulative

delay, T, experienced by all packets associated with a non-empty session as

.

T=U+V (18)

S S
A
where U= E( L A)), and V 4 E( Z Ci) represent the mean cumulative access delay
i=1 i=1
and the mean cumulative contention delay, respectively, over a non-empty session.

Consider the access waiting time, Ai’ of the ith packet of a non-empty session.

Rule 1 of the algorithm implies that

a if the ith packet arrived during an idle algorithm step
A, < B4+a if the ith packet arrived during an unsuccessful algorithm step

l1+a if the ith packet arrived during a successful algorithm step

Clearly then Ai < max(o,B8+a,1+a) = l+a. Thus, U < (l+ﬁ)§, and in view of (17) we

have that
U < o, for every A < Ao(a,B;m,n) (19)
Next we consider the mean cumulative contention delay, V, experienced by all
packets associated with a non-empty session. Let Vk denote the cumulative conten-

tion delay over a session of multiplicity k > 0. The rules of the algorithm yield

the following relation for Vk:

Proposition 3

S . te e . Ye ,Te te e
AR R e N IR I Y D I T RPN Y

0 k =0
m m-1 _
1+a+jil ij + jil xj ng k =1
Vk =< » m ) H:l - (2
\u*l)k+(.‘ L\‘)k + -t kl LK, + 7 +
j=1 1 i=1 i i
m-1 ”m "
\‘ o \l (Y, + VY 4 Ll\ N K 2
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are as given in proposition 1;

7 3 1,V 7,7, HES A NN e LR . T

; >
<
-
—
A
—
I
3
-
[
=]
o
-~
—
I A
~
A
=

>l
[

~ Poisson with intensity (1-j/m)X, and ij is independent of Xj' 1<i<m-1;

Yj ~ Poisson with intensity (1-j/m)BA, and §j is independent of Yj, 1<j<m-1.

The proof is straightforward and will be omitted. We note only that, for
k = 1, the first sum represents the total cumulative contention delay experienced
by the packets of m independent subsessions with appropriate multiplicities, while
the second sum represents the cumulative waiting time before first transmission of
all the packets that were initially placed in cell #j, where 1 < j <m. Similarly,
for k > 2, the first two sums represent the cumulative delay experienced by the k
collided packets while waiting for their first retransmission; the third sum
represents the total waiting time before first transmission of all the packets that
arrived during the collision of the k packets, and were intially placed in cell #j,
where 1 < j < m; the fourth and fifth sum represent the total cumulative contention
delay associated with m and n subsessions, respectively, with appropriate multipli-
cities.

Taking expectations in both sides of (20) yields the following

Proposition 4. The mean cumulative contention delay, V

K= E(Vk), experienced by
all packets associated with a session of multiplicity k > 0,satisfies the following

system of equations

where {

e e e e e
PP AT E T I g
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: ) ) ) ) ]
: £ = (L)) = e D) Dos Ly £ = R (L) = Bradk s
i i=0
o n-2 k  ®  k-j
. 1 : £ L1 L
+(km+ 'Z'BA(m"l))Z riLi +Z Z Z bj(k’n)bi(k-J’n—E)pﬂ(k—J—l)LH’Z’k 2 1,
i=0 £=0 j=0 £=0 1i=0

AT

where Pi» Sy» T and bi(-v-) are as defined in propositions 1 and 2.

‘s “ ‘l

Note that system (21) differs from system (6) only in the forcing terms fk'

F The following is a result analogous to theorem 2.
5

L Theorem 5

Given a,8,m > 1, and n > 2, let Ao(a:B;m,n) be as defined in theorem 2.

Then, for every Ae[O0, Ao(a,B;m,n)),

}

(i) system (21) has a solution, {Zk k>0’ such that

5uk2+uk+u,k>1, (22)

- a. 2
2. =0; 0c< ﬂlk + sz + 23 <z 1 ) 3 >

0 |3

where the coefficients Zl, 22, 53’ Ups Uy and u,y are bounded functions of A.
(ii) the mean cumulative contention delays, {Vk}k>0’ coincide with the solution
{Zk}kiO’ that is, Vk = Zk’ for all k > 0.

The coefficients £ 22, KB’ ups Uy, and u

1 are derived in the proof of the

3

theorem, which can be found in the Appendix.

Next we write the mean cumulative contention delay, V, over a nonempty session

as

-1
Vo= (1-py) Z P Vi (23)
k=1

“rom theorem 5 we have that, for cevery W [0 58 (o 0 imon)),
(8]

T e e e e e e e e
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2 2
0 < Zlk + tzk + 235 Ve Sujkt Hugk tuy o, k21 (24)

Substitution of the above bounds into (23) yields

Vp SV 2V <, for every Xe[0, A (o,8;mn) , (25)

"S- S e s

(a}\(l-l-(x)\)ul+a)\u2+(l—e.a>‘)u3) /(1-e"%

<
]

_ -aA QA
Ve (aA(1+aA)£l+aA£2+(l-e )23)/(l-e )

From (25), and in view of (17), (18), and (19) we have that, for every Ae|O0, Ao(a,B;m,n))
both assumption (A.l) and assumption (A.2) in theorem 4 are true; thus, theorem 4

yields the following corollary.
Corollary 3. The mean packet delay, D()A), is finite for every Ae[O0, Ao(a,B;m,n).

a. Stability

A random-access algorithm is called stable if the mean packet delay is finite. The

maxjimum stable throughput, n, of a random-access algorithm is defined as the supremum

of the cumulative input rate, A, so that the algorithm is stable; that is,
n 4 sup{A : D(A) < =},
Given the network parameters a,B3, let n(a,B) denote the maximum stable through-

put of the LANSA; then, from (10) and corollary 3, we have

X(a,B) < n(a,B)

since A < Xo(a,B,m,n) is only a sufficient condition for finite mean packet delay.
A plot of the lower bound X on the maximum stable throughput induced by the LANSA,

as a function of a, for B=a and B=l, is presented in figure 3. In the same figure

we show throughput comparisons between the LANSA and the optimally controlled non-
persistent CSMA and CSMA/CD algorithms presented in [5]. These algorithms assume

that the users are aware of, or can estimite the number of blocked packets currently

PRI A A SRR
PP I S S S SR SR A £ P N
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in the system; this additional information is, then, used to implement retransmission
control policies that stabilize the unstable non-persistent CSMA and CSMA/CD. As it
can;be seen from figure 3, the LANSA throughput is uniformly greater than that

induced by the CSMA algorithms. Note, also, that as the propagation delay, a, in-
creases, the throughput differences between the LANSA and the CSMA algorithms become
significant.

In figure 4 we plot X as a function of the packet lentgh T (in slots) for
representative values of the conflict truncation time R (in slots). The effect of
the early collision detection is perhaps better illustrated in figure 5, where X is
plotted as a function of the conflict truncation time R, with T as a parameter. For

each T, the left end point of the curve corresponds to R = 1, and the right end

point to R = T,

b. Bounds on the Mean Packet Delay

Given a,B,m,n, and A < Ao(a,B,m,n), then from theorem 4 and (18) we have

D=T/S=A+C

where A = U/S, and C = V/S are the mean access delay and the mean contention delay,
respectively.

We consider first the mean access delay. The process {An}n>l is regenerative
with respect to the imbedded renewal process {Ni}i>0' defined at the beginning of

this section, for the same reason that {Dn}n>l is. Thus, theorem 3 applies to

{A} as well. In particular, we have that A converges in distribution to a
n n>1 P ’ n &

random variable A, with A = E(A,) = U/S. Now, Since E(A) <1 +a, it follows

that A, is uniformly integrable. Thus,

Zim E(An) = E(A,) = A (26)

nroee

Next we define the process {Z(t), t > 0} as follows

TECFCRTECO ST Swoe e cm = - -
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‘0 if te[tn_l,tn) and the nth algorithm step is idle
Z(t) = 1 if tc[tn_l,tn) and the nth algorithm step is successful

lZ if telt ,tn) and the nth algorithm step is unsuccessful

n-1

Let a be the arrival instant of the nth packet. Using the process Z(t)

we write
E(A) = E(E(A [2(a))) (27

Now, since the arrival process is Poisson we have that the conditional distribution
of An conditioned on the events {Z(an)=j}, for j=0,1, or 2, is uniform over an

interval of length a, 1 + a, or B+a , respectively. Thus,

1(z(a) = 0) + o 1 7a D=1+ =8 B*"‘ 1(z(a) = 2) (28)

E(An|2(an)) = 3

iR

where I(-) is the indicator function of the event in the parenthesis.

From (27) and (28) we have

EA) =S Pz@) =0 + lzﬁ P(z(a) = 1) + 52 8*"‘ P(z(a) = 1) (29)

Next we give a result relating to the asymptotic behavior of the process Z(t).

Lemma 2 Given a,B,m,n, let A < AO(G,B;m,n); then

Zim P(Z(t)=j) = ZLim P(Z(an)=j)=ﬂj s 3 =0,1,2

g n—+e
where
m - a(m-1) Aa(min=1) (1-14ma) A) (B+a(m+n) " L+a(1-a(B+a(min)) “Hr ™l ,
™, = (1+a), and n2=(8+oc)(1-(1+ma)>\)(8+a(m+~n))"l-a(8+a)(Bm(mm))'lL'l,

The proof of lemma 2 is given in the Appendix.

From (26), (29), and lemma 2 we have

A= (a0 T, + (1+a)n1 + (B+a)ﬁ2)/2 (30)

0

where 1 ?71, and 7, are as given in lemma 2.

2

0’
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Using the bounds on L, as given by (13), in (30) we have

u(dz) l—u(dz) A
cdy v d | —— +—p— A <A <A*Z 4 +d

* + ' 4
Le Ly

u(d,) 1-u(d.)
A 2( 2 2 ) (31)

N

1

MM +2041) +(1-(L4+ma) XD (B+almin) ) L ( (min) a2+82+208) ) /2

where d

d, = aa-(B+a(min)) L (al+(B+a) 2) /2

2

and where u(dz) =1 if d2 > 0, and u(dz) =0 if d, < 0.

2
In table 4 we give the values of the bounds Az, and A: for representative

values of the network parameters a and 8. For each pair, (a,B), we used (m,n)=(m* n*),

as given in table 1.

Next we consider the mean contention delay C. For X < Xo(a,B;m,n) we have

that C = V/S, where S is as given by (16). Thus,

C = (1-py) V/(AL) (32)

The bounds on V and L given by (25) and (13), respectively, can be used in
(32) to obtain bounds on C. It is possible, however, to obtain bounds on V that
are tighter than those given by (25). The method parallels the one dev oped in
part (c) of section 3, and involves the computation of tighter bounds on Vk. for
1 <k <N, where N is some finite natural number. Working towards this direction

we express a theorem, parallel to theorem 2.

Theorem 6

Given a,B,m,n, let Xe[O,Xo(a,B;m,n)); then, for every N > 1

I_lkz+£2k+€35\f£5vkivtiulk2+u2k+u3,1ik§N, (33)
where {VE ; 1<k<N} is the unique solution to system (11) with
o
bk = fk({Fi ; i1)) + :E: ak'i(u1k2+u2k+u3),
i=N+1

LIRS



{ :
and 1?k . I*k“N! 15 the unique solution to system (11) with

o 2 .
R P il}) + :E: ak.i(llk +£2k+£3) ;
i=N+1
R Lot r o N, and Fl = bk-c, for i>N ; Ci = Lf for 1<i<N,
i o i~ parallel to the proof of theorem 2, and it is omitted.
4 . Ao e k -~ N, and the quadratic bounds given by (22),
r N .
i Aot (34)
_ ! u
b.
N
. i a 2 d
- Y '.V 3
‘ .7‘)” ;k(ulk +u2k+\13 k) (35)
k=]
N
. o . 2
b oot I-p, }E: pk(vi zlk 2Zk £3) (36)
T k=l
e U ".‘( ire as w2iven in (25).

E RS

the noamnds on Voand 1, as given by (34) and (13), respectively, in (32),

vields the tollowing hounds on C.
g _ * Ay ok < o* = B * * 37
g (L-p) Ve /OALD) = €p < € < €0 = (1-p)Vi/(ALy) 37)

Finally, combining (37) with (31) vields the following bounds on the mean

- packet delay, for s [0.3\()((1‘3;m,rl)).

D, <D <D (3%)

where D = A* + ¢t , And D, = A
u u u {
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We computed the bounds {V:; 1<k<N}, and {Vﬁ; 1<k<N}, required for the evalua-

tion of V:, and V}, by solving system (11), for N = 10, and with b , 1<k<10, as

K’
defﬁqed in theorem 6. We, subsequently, computed the bounds V:, and V%, from (35),
and (36), respectively. In all computations we used m=m*, n=n* as given in table
1. In table 5, we give the bounds C:, and Cz, on the mean contention delay, as
found from (37), for representative values of the network parameters a,8, and for A
in the range {0, X(a,B)). Finally, in figures 6, and 7 we plot the bounds Du‘ and

DE on the mean packet delay, induced by the LANSA, with (m,n)=(m*,n*), as found from

(38), for representative values of the network parameters a,B. Note that the obtained

bounds remain tight, (they coincide up to the fourth decimal point), even for A

close to A(a,B).

6. A GENERALIZED VERSION OF THE ALGORITHM AND SOME COMPARISONS

The LANSA is one of the simpler algorithms that can be designed to operate
under limited channel sensing, yet it is inherently stable and attains high perfor-
mance. This is achieved by, simply, parametrizing its operation on the parameters
m and n, whose values are adjusted to the network characteristics for throughput
maximization. The question that arises then is: If we parametrize the operation of
the algorithm on a larger set of parameters, will this result in significant perfor-
mance improvement? To answer this questions, we developed and analyzed a generalized
version of the LANSA, named G-LANSA. The rules of the G-LANSA are the same with

those of the LANSA, except for the following modifications.

Rule 1' -- Counter Initialization
;l , 1fkl=k0
CIk = ) M, if kl # ko, and the channel was busy with a successful transmission
1 \ M , if kl # kO, and the channel was busy with a collision

where M, and M' are integer valued random variables with distributions
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'ui for 1 < i <m, ﬁi for 1 <i<nm
P(M=i) = P(ﬁ:i) =
e 0 otherwise . ( 0 otherwise

and where m > 1 and ﬁvz_l are integer parameters.,

Rule 3' -~ Counter updating (First alternative)

a) If cI, > 1, then

k
i
CIki -1 , if the channel was idle during (ki’ ki+l)
CIk = CIk, + m-1 » if a successful transmission occurred during (ki’ ki+1)
i+l i
CIki + mim-1 , if a collision occurred during (ki’ ki+1)
b) 1If CIki = 1, and a collision occurred during (ki’ ki+1)’ then

kiv1

where Q is an integer valued random variable with distribution
9 for 1 € i < m+ n

P(Q=i) =

0 otherwise

If CI = 1, and a successful transmission occurred during (ki’ k ), then the

k.

i+l
i

user has successfully transmitted his packet, and he becomes idle.

Rule 3" - Counter updating (Second alternative)

Same as rule 3' above except for the following modification. If CIk > 1, and
i

the channel was idle during (ki’ k ), then

i+l

b
3
1
|
4
q
!

...‘..\ e
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i+l i

wherg'

1 , if the last non-idle algorithm step before (ki’ ki+l) was successful

R = 0 , if the last non-idle algorithm step before (ki’ ki+l) was

unsuccessful, and CIk > 2
i

oI
-

if the last non-idle algorithm step before (ki’ ki+1) was
unsuccessful, and CI = 2

k.
i

where R = 1 with probability E, and R = 0 with probability 1 - E.

From rule 1' we see that the G-LANSA, in contrast to the LANSA, distinguishes a
packet that arrived during a successful algorithm step from a packet that arrived
during an unsuccessful algorithm step; more specifically, the former is placed in
one of the first m cells of the stack according to the distribution {ui,lfﬁfm},
whereas the latter is placed in one of the first m cells of the stack according to
the distribution {ﬁi, 1<i<m}. Since rule 1 of the LANSA is a special case of rule
1' with m=m, and {ui=ﬁi=l/m, 1<i<m}, the performance of the G-LANSA will be at least
as good as that of the LANSA. Note, however, that rule 1' requires that a user, who
senses the channel upon his packet's arrival and finds it busy, should be able to
distinguish between a successful transmission and a collision before the channel
goes idle. In contrast, rule 1 is free of the above requirement, and, therefore,
the LANSA is easier to implement, compared to the G-LANSA. Concerning rule 3',
note that, when a collision occurs, the group of collided packets is split using the
first m+n cells according to the distribution {qi, 1<i<mn}. Since the first m cells
are also used to accommodate newly arrived packets, we see that the G-LANSA, in con-
trast to the LANSA, allows the "mixing" of new packets with collided packets in the
first m cells of the stack. Also note that rule 3 of the LANSA is a special case of

rule 3" with m=m and {q =0, i<i<m; q. = U/u, mel<iomn},
i - i -

e -~ - PN et B AT
) ot N . c v . - o«
¢ e '...'.. R -‘_ ot * 4 1.."‘“. (": <8 e s * Y S DK A .

» - \




r———

32

Finally, rule 3" presents an alternative counter updating scheme in the event of
an idle algorithm step. Unlike rule 3', where a user always decrements his counter
by one (i.e., R=1), rule 3" requires that users be more '"cautious" and decrement
their counters by either one or zero, depending on the past activity on the channel.
The rationale for this cautiousness is that if the last non-idle algorithm step before
the current idle step was unsuccessful, then the probability of a future collision
is increased. Thus, to avoid this possible collision, packets in cell #2 (if any)
are placed in cell #1 (i.e., are transmitted) with probability p, or remain in

cell #2 with probability 1-p, where p is a parameter to be optimized for throughput

maximization. Rule 3" is similar in spirit to the "skip step' introduced by Massey,
[10]. to improve the performance of the original Capetanakis algorithm. For rule 3"
to be implementable, users should maintain a "flag" that indicates whether the last
non-idle algorithm step was successful or unsuccessful, since this determines the
value of R used in the updating of the counter. We note that this i§ possible, even

though users use only limited channel sensing.

Numerical Results and Throughput Comparisons

We analyzed the G-LANSA utilizing the methods used in the analysis of the LANSA.
In table 6, we give the results for the lower bound X on the maximum stable through-
put attained by the G-LANSA that uses rule 3', for representative values of a, and
for 8 =1, B =0.5 and B = a. In the same table we include the best choices for
the algorithmic parameters. In all cases the probabilities Mo ii’ and q; were

chosen as follows:

{u,=1/m*, 1<i<m™},(p.=1/m*, 1<i<m®},{q. = p*/m*, 1<i<m®; q. = (1-p*)/n*, m*+l<i<m*+n*}
1 - 1 - — 1 p - - ql - =

x = * * . .
, where the values of m™, m*, n, and p are as given in table 6.

We should point out, however, that X is not particularly sensitive to deviations

from the given optimal parameter choices.
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Comparison of tables 1 and 6 shows that, for B = 1, the G-LANSA with rule 3'
coincides with the LANSA, since m*=ﬁ*, and p*=0; thus if the users do not have early
collision detection capabilities, then, in the case of collision, "mixing" the

“

collided users with the newcomers, i.e., using p*#O does not improve the throughput
performance. However, for smaller values of B, using m*#ﬁ*, and p*#0 offers some
performance improvement over the LANSA (the corresponding A's differ in the third

decimal point). The maximum performance improvement () increase in the second

decimal point) over the LANSA is attained by the G-LANSA that uses rule 3", when
B =a. The results for A and the optimal parameter values for this case are given
in table 7.

In summary, the G-LANSA offers a slight performance improvement over the LANSA,
at the expense of increased operational complexity. Thus, unless B is very close to
a, the LANSA is practically sufficient.

In figure 8 we plot the lower bound X on the maximum stable throughput of the
LANSA and the G-LANSA as a function of a, for B = 1, along with the ﬁaximum stable
throughput attained by the controlled NP-CSMA algorithms of [5], and the Window-CSMA
algorithms of [12]. Figure 9 presents the corresponding results for B = a. We
should point out that in the controlled NP-CSMA algorithms it is assumed that the
network users are aware of the number of backlogged packets currently in the system.
However, this information is not available to the users, and must be estimated.

The Window-CSMA algorithms are the extension of Gallager's algorithm [9], which
is the most efficient Tree algorithm known to date, to the carrier sensing environ-
ment considered here. The Window-CSMA algorithms use continuous channel sensing;
that is, users are required to sense the channel constantly even if they have nothing
to transmit.

As it can be seen from figures 8, and 9, the proposed alporithms out perform
the controlled NP-CSMA algorithms for every value of the propagation delav w.  The

max imum stable throughput attained by the Window-CSMA algorithms is slipghtly higher




than the lower bound A for larger values of a, but it becomes slightly lower than

A as o decreases. Thus, generally speaking, the proposed algorithms attain through-

puts as high as the Window-CSMA algorithms, despite the fact that the former use

limited channel sensing, and are much easier to implement than the latter.

So far we have compared the throughput performance of the LANSA and the G-LANSA
to the performance of two other heuristic algorithms. The question that arises then
is: what is the maximum stable throughput that can be achieved by the optimal
algorithm, (i.e., the algorithm that attains the greatest maximum stable throughput)
in the class of algorithms that operate under the user - channel model described in
section 2. Given a user - channel model, the maximum stable throughput of such an
optimal algorithm is termed the capacity of the user and channel model. Considering
the class of all realizable algorithms that do not use short packets to reserve the
channel, Molle in [11] and Humblet in [24] have derived upper bounds on the capacity
of the user - channel model considered here. In {25}, we have used the bounding
techniques developed in [26] to derive tighter bounds than those of [11],and [24].
These upper bounds on the capacity are included in figures 8, and 9, for 8 = 1,

B = a, respectively.

7. CONCLUSIONS

In this paper we presented "limited sensing" random access algorithms for carrier
sense multiple access channels. The proposed alporithms are representative members
of a new class of stable algorithms with '"limited sensing'" and "free access"
characteristics. ''Limited sensing" algorithms require that users sense the channel
only while they have a packet to transmit, and, thercfore, they have practical
advantages over algorithms that require continuous channel sensing, such as the
algorithms in [12]. The term "free access” is used to denote the fact that a user
may transmit a packet immediately after its peneration, provided that he senses the
channel idle; this latter feature simplifics the implementation of the alpovithm

¢eVen more .,
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We demonstrated that the proposed algorithms combine simplicity and limited
channel sensing with inherently stable operation and high performance. More
specifically, we derived lower bounds on the maximum stable throughput induced by
both tﬁe basic algorithm, named LANSA, and its generalization, named G-LANSA. On
the basis of the derived bounds, we concluded that the proposed algorithms out perform
the optimally controlled version of the traditional non-persistent CSMA algorithms
[5], and have similar throughput characteristics with the most efficient Tree-
type algorithms [12}, despite the fact that the latter use continuous channel
sensing and are more complex to implement.

We introduced bounding techniques that can yield arbitrarily tight upper and
lower bounds on the induced mean packet delay. We used these techniques to evaluate
the mean packet delay induced by the LANSA. The delay analysis exploited the
existence of points in time, where the stochastic processes associated with the
random access system probabilistically restart themselves. Using the theory of
regenerative processes we showed that the LANSA is stable if it induées persistent

regeneration points, with finite mean recurrence time, (i.e., L < ®). Moreover,

it was shown that under the same condition the various "averages'" concerning the
packet delay (limiting average, limiting expected average, and expectation with
respect to limiting distribution) exist and coincide. Many of the random access
algorithms encountered in the literature have regenerative properties. Thus, the
direction taken in this paper may be used in the stability analysis, and in the
evaluation of the mean packet delay of several other schemes. In this study we

dealt only with the mean packet delay. However, to fully characterize the delay
performance offered by the network, knowledge of the packet delay probability dis-
tribution is needed. At this point, the analytical evaluation of the delay distri-
bution induced by the algorithms presented here seems extremely hard. Note, however,

that the bounding techniques used in this paper can be extended to yield arbitrarily

tight upper and lower bounds on the higher moments of the delav [28]. We should
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point out here that the LANSA and its generalization have last come - first served
characteristics (in a generalized sense); that is, new arrivals enter the system
upon arrival, and they are usually accommodated before packets already in the system
are. This characteristic causes relatively large variances i: the induced delay,
but it also favors "impatient" users. The favoritism to impatient users is advan-
tageous in networks in which packets must either be transmitted within a short time
limit or be lost [20]. However, to fully explore the last come -~ first served
characteristics of the limited sensing algorithms, additional research is needed.
The behavior of such algorithms must be studied when specific upper limits on delays
are imposed, and when packets in different stages of algorithmic progress depart
the system.

Finally, we note that the algorithms presented in this paper have been modified
to operate asynchronously in [27]. The asynchronous (unslotted) algorithms simplify

the operation of the network, since there is no need for the users to maintain a

global time base.

In closing, we mention that, very recently, Humblet [29], and Georgiadis et al.

[30] have independently shown that Tree algorithms can be modified to operate under

limited channel sensing. Unlike the algorithms proposed here, their algorithms have

"limited sensing' and "blocked access' characteristics. This is another class of

inherently stable algorithms, that combines high performance with simplicity, and it

should be further explored in the carrier-sense environment.
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APPENDIX

Proof of Theorem 2

Part (i)
To prove that system (6) has a non-negative bounded solution, {yk}kzp’ ve

construct a sequence {yio)} that serves as an uppet bound to this solution.

k>0’

With b and ¢ appropriate real constants, we define

y(o) 4 a y(o) 4 bk-c , k > 1. (A.1)
0 k -
We also define the sequences {yin)}k>0, n>1, as follows
(0) A . (m) & (n-1) > A.2
Yo T %Yy “Zak,iyi oy o k21 (a.2)
i=1
where the coefficients a, ; and g are as defined in the theorem.

In a straightforward manner we obtain

(D (0)

= - , > 0 A.

Yy Y d, » k> (A.3)
where dO = 0, and dk’ k > 1, are as given in (A.5) and (A.6). Since the coefficients
ai K are non-negative, we deduce from (A.l), (A.2) and (A.3) that for every fixed

(n)

n , . . . .
k > 0, the sequence {yk . nzp} will be non-negative and non-increasing, if we choose

b and ¢ such that the following inequalities are satisfied:

bk-c > 0, for every k > 1, (h:0). (A.4)
d, S (L-(ama)n) b - (1-m(1-s)de = (Lta(lams))) > 0 (A.5)
dy 2 “A(BH(mH)a)b + G C-(B+a(1+mro+”qk,o)) > 0, for every k > 1 (A.6)

where “k = (l—ro)m + <1-qk,0)”_l

Thus, under conditivns (A.4), (A9, and (A.6), the foltowine limits exist:
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, (n)
Lim vy =y , k>0 (A.7)
k k

whege Yo = a, and yk < bk-c, k > 1.

The numbers Yy obtained in this manner solve system (6). Indeed, let us pass

to the limit as m** in equation (A.2). 1In the right hand side a term-by-term

-; passage to the limit is admissible, for the series at the right converges uniformly
§ as regards n, since it is bounded from above by the series with constant terms

} yéO) = bk-c. Thus, on effecting this passage we find that

.. ®

yk=zak,iyi+gk’k31

- i=1

; i.e., {yk, k>0} is indeed a solution to system (6).

Next we investigate the conditions under which inequalities (A.4), (A.5), and

8 (A.6) are satisfied. First we prove that Gk >0, for every k > 2, m>1, n > 2,

oy a>0, 8>0, and XA > 0. We have

: G, > (1-q, n-1> (1~q, Jn-1 > (1-(l-n H)Hn-1 = 1-n2 > 0 (A.8)
- k — k,0 - 2,0 —

N Also, from the well known inequality exp(-x) > 1l-x, we have that for A > 0

+ 1-m(1-s) > 1-(14ma)) (A.9)

From (A.6) and (A.8) we have that c must be positive. If 1-(l+ma)X < 0 and

l—m(l—so) > 0, then condition (A.5) cannot be true, since b > 0 and ¢ > 0. If
(1-(1+ma)X < 0 and l—m(l—so) < 0, then to satisfy condition (A.5) we must choose

¢ > b, which contradicts condition (A.4). Thus,

A < (1+me) L (A.10)

DA

Next we choose ¢ and b such that (A.5) is met with equality; that is,

: ¢ = (=m0 0b ~ (T4a(lams ) (1=n(1=s ) " (A.11)




Al

The above choice also guarantees that condition (A.4) is met, since, according to

(A.9) and (A.10), we have

0 < (1—(l+ma)k)(l—m(l—so))-1 <1,

and therefore b > c.

Substituting (A.ll) into (A.6) yields,

Gk(uk b-vk) >0, k>2 (A.12)

where

V= ) = (Lta(lms ) (1m(1-5 ) T +(BHa(Lmr g, ) N(L-rdme(l-g, In-1)7"

9,0
1

0

=y (0 =(L= (L4 X) (Lom(1-5 ) "M (B+(m) @) ((L-r ) m(1-q, In-1)~

Since Gk > 0, since uk

k > 2, we have that condition (A.12) is met, if u, > 0, and if b > max {vk/uk}kzZ'

is a monotone increasing function of k, and since vk > 0,

Since the ratio vk/uk is a monotone decreasing function of k, we choose b = vz/uz.
Next we show that, given a,B,m, and n, the condition uz(k) > 0 is met if

A< Ao(a,B;m,n), where Ao(a,B;m,n) is the unique root of equation (7) over the inter-

val [0,(L4m) 1), First we write u,(A) = F(A)/G,(A), where F(M)(1-(1+ma)))-

(l—m(l-so))_l

GZ(A)—X(B+(m+n)a). From (A.10) we have that GZ(A) > 0, for every X > 0.
Thus, we examine only the function F(A). For this function it can be easily proved
that sz(X)/dAZ < 0, for every Ae[O,(l+ma)_1]; that is, the F(A) is a concave func-

tion over the domain of interest. Now, since F(0) > 0 and F((1+ma)-1) < 0, we

clearly have that the equation F(A) = 0, or equivalently equation (7) in the theorem,

1

has a unique root, Xo(a,B;m,n), in the interval [0,(l+ma) ). Furthermore, for all

XC[O,AO(G,B;m,n)) we have that F(X) > 0, or equivalently

uz(A) = (l-(l+ma)X)(1—m(l—so))-l—A(B+(m+ﬂ)G)G;l(X) >0 (A.13)

The construction of the lower bound, b'k-c', on yk is parallel to that of the

upper bound and is omitted. We onlyv note that if we let
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¢! = ((1-—(l+mcx))\)b'-(l+ﬂ(l+mso))(l-m(l-so))—l

then, instead of condition (A.l12), we now have the condition Gk(ukb'—vk) <0, k>2,

e . . . . T _ : =
which is satisfied if we choose b' = m).n{"k/uk}k-32 Wn/um-

Part (ii)

Here we show that the mean session lengths, {Lk}k 0’ induced by the algorithm

coincide with the solution {yk}k>0 of part (i). The proof is intimately related to
the uniqueness of a solution to an infinite dimensional linear system, such as
system (6). We should point out that the question of the uniqueness of the solution
depends upon what conditions are imposed on the solution. The following lemma

indicates a class of sequences in which the solution of system (6) is unique.

Lemma A:
In the class of non-negative sequences {zk}k>0 for which
Z, - .
sup (7) < ® (A.14)
k>1 \ k
system (6) has a unique solution.
Proof Suppose that system (6) has two non-negative solutions satisfying (A.14),

and let the sequence {wk} denote their difference. Then, the sequence {w, }

k>0 k' k>0

satisfies condition (A.1l4), and solves the following system:

o0
w0=0;wk=Zak’iwi,k3_l
i=1l
Next define w 4 0, and w 4 w, /(u k2+u k+u_ ) for k > 1, where u,, u,, u, are real
0 ’ k k 1 2 3 - 1 2 3
constants with u > 0. The sequence {;k}k>0 solves the following system:
wg =03 Vi =.§ R k> 1
i=1
where 2 = a (u 124u_+u y/(u kZ4u, k+u ) . i > 1, k> 1.
k, i k,i * 1 2743 1 pktuq) 1 2 1, k>

We shall prove that there exist coefficients u,, u,, u

1 2 3 (n1 > 0), such that




L 8.0 -4 & LA RS & « ¢

b LB L e WL A L ELELELR AR -

AS
a
sup Q. la | <1 (A.15)
k>1
- i=l
Assume that U Uy, ug are chosen such that
Q(k) = u k2+u k+u, > 0 , for every k > 1 (A.16)

1 273
The following conditions are, clearly, sufficient for the validity of (A.16).

u1>0, Q(1) = u +u, +u >0, and Q'(l) = 2 u

1772773 1 Huy20 (A.17)

Under condition (A.16), and after straightforward calculations we have

e o] (2]

)R 4112 3% A £k
ki ki K=
i=1

2
i1 ulk +u2k+u3

; where dk1=k2

-Ckl’ dk2=k-ck2, dk3=l_ck3’ and where
€y = 1+(1+ma) A(1+(a+m )A), €1y = 1-(1+ma) A, 13 1-m(1 so)

-1,.2 -1 -1
el = (1-n k" =(20A+1-n ) k-noA(14+0A) -(B+ma) A(1+(Bm "+a)A) , k > 2
¢ = A (B+a(m+n)), €3 = l-m(l—r0)~n(l—qk’o) ,» k> 2.

Next we prove that Ek < 1, or equivalently that

1% + 299 + CL 343 >0, k2>1 (A.18)

Assuming that u, > 0, we rewrite conditions (A.17) and (A.18) as follows

1
¢+yy+1>0,¢+2>0, €2 o + ck3w te 0, k>1 (A.19)
where ¢ = u2/ul, and ¢ = u3/ul.

Given o,B,m,n, then, for every AC[O,AO(Q,B;m,n)), we have that

0 < iy < €13 3 Sk < 0, 3 < 0, k > 2 (A.20)

; furthermore, it tollows from (A.14) that, for everv k > 2,
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0 < ST <1 (A.21)
k3 13
From (A.20), and (A.21) we deduce that the inequalities given in (A.19) are satisfied

»
Y for any ¢ and ¥, such that
»

c -1 c c c c
' ¢ > max(-Z (—il - 1) (1 - 12) , ( ki _ 11).( 12 _ ckz)) L k> 2.

13 €13 k3 13/ V€3 k3
c c c c
_c_lg¢__}‘.];<w<__kg¢__£]:-,kiz

13 €13 k3 k3
" ; furthermore, inequalities (A.20) and (A.21), guarantee that such ¢ and Y always
» exist.

Thus, we have proved that there exist ul, u2, u3 such that

: b = :E: l;ki[ <1, for every k > 1 ‘ (A.22)

Also, from the functional form of dkl’ dk2’ and dk3 we deduce that

im £ =% <1 (A.23)
. ko0 n

y . S | -1 .

8 Given n > 2, we choose an € > 0, such that € < min(n ",1-n 7). Then it follows

from (A.23) that there exists ko > 1, such that

1
. . = A.24
" |€k nl < e, for every k > kO ( )
i If we let
)
M= max (&) (A.25)
- 1<k<k
. <k< 0
4

then, from (A.22), we have that M < 1. Thus, it follows from (A.24), and (A.25)

that
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1
h 4 sup {Ek} < max(z +e, M <1
k>1

Now, let p denote the supremum of ngl’ k > 1. From (A.l4), we have that

p <, and that
=]
I;kl < E |Eik| p < hp, for every k > 1.
i=1

Thus, p < hp, and since h < 1, we have p = 0. Thus, [le = 0 for every k > 1;

i.e., |wk| = 0 for every k > 1, and the proof of the lemma is complete.

The solution X of part (i) clearly satisfies condition (A.14), thus, from lemma
A, we have that X is the unique non-negative solution to system (6) satisfying
condition (A.14). Next we use arguments parallel to those used in Theorem 6 of

(13], to show that Y = L, , for every k > 0. Let us consider the random variable

k’

ET = min(£,T), where £ is the session length, and T is a real number, T > 0. Also,
let Lk(T) = E(ZT|K=R), k > 0, where K is the multiplicity of the session. It can

be easily seen that

, T such that 0 < 1, < T, (A.26)

0 < Lk(Tl) < Lk(Tz), for any T 1

1’72

Lim L(D =L, k>0 (A.27)

T30

k!
Since Lk(r) < 1, from (6) and (A.26) we deduce that

0 <1 (D a3 0L (D) < > a g Li(D +g o k21

As was done in proving part (i) of the theorem, it can be shown that the solution

) aj izes L. > & i 5 ke i < > 0. ;
{yk'k{O majorizes lk(r). k > 0, for any fixed 71; that is, Lk(T) < yk. k>0 Thus,
from (A.26), (A.27) we deduce that Lk < Vi k > 0, and, therefore, the mean session
Tength sequence “'k 'k " satisfies condition (A.14). Using the result in Lemma A,
we have 1o = v | for every k A 0.

3 v




Proof of Lemma 1

(n)}

< .
0, 1 < k <N, we define the sequences {xk 1<k<N

Given N > 1, and b » n>0,

>
k_
such that
N
(0) _ (n+l) A (n)
X, o= Yk-6 , X, = :E: A g Xy +b

i=1

< <
L LSk,

where Y,8 are real constants.

As was done in the proof of theorem 2, it can be shown that if X < Ao(a,B;m,n)

WD ¢ (0

1 <k < N; (see [25] for details). Thus, from (A.28) we have that, for every n > 0,

(n+l) (n) o Iy (n)
0 < Xy <X 1 <k <N. Thus, the limit X, = Lim X,

non-negative. Finally, taking limits, as m®, in both sides of (A.28) proves that

then there exist y and §, vy > § > 0, such that = vk-6, for every k,

, as m*o, exists and is

the sequence {xk} solves system (11). To complete the proof of the lemma we

1<k<N+1
use the following standard result in the theory of finite linear systems with non-
negative coefficients (see, for example {11, Thm. 2.1]): if system (ll1) has a non-

negative solution for every b

>0, 1<k <N, then the matrix (IN—AN)—1 exists, and

k
has non-negative elements. Thus, given bk >0, 1 <k <N, system (11) has a unique

. . _ -1 _ t _ t
non-negative solution x = (IN AN) b, where x = (xl,...,xN) ,» and b (bl"°"bN) .

Proof of Theorem 3

1 + »
Let {xk}lfkiN and {xk}likiN be the solution to system (11) that corresponds to

- : L} . t
the non-~negative sequence {bk}lﬁkiN and {bk}lﬁkiN’ respectively. If bk <b', 1 <k <N,

then from lemma 1 we have that Xy < xi, 1 < k < N. This monotone increasing property

of the solutions to system (1l1) with respect to the non-negative forcing terms proves
u
the theorem. For example, to prove that Ly S Lo 1 <k <N, we argue as follows.

From proposition 2, we have that {Lk}l<k<N solves system (11) with forcing terms

i=N+1

‘“(H.R:m,ﬂ). then trom theorem 2 we have that hi - by' where the coefficients
28
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bk, 1 <k <N, are as defined in theorem 3. Thus, from the monotonicity of the

u
i < < k < N.
\ solutions, we have that Lk < Lk’ 1 < k < N. The lower bounds {Lk}1<k<N

. »
established in a similar manner.

w
A
Proof of Theorem 5

; Part (i)

ﬁ As it can be seen from the proof of theorem 2, to prove that system (21) has

) 2 ) )

- a solution {z }k>0’ such that 0 < z, < u k™+u,ktuy, k > 1, it suffices to show that

. 2

; there exist ul, uz, u3, such that ulk +u2k+u3 > 0 and

&)

5 @

>, 2

>

2 (u i +u21+u ) + f ({L } ).i ulk +u2k+u3, for every k > 1 (A.29)
o From theorem 2 we have that if A < Ao(a,B;m,n), then 0 f-Lk < yi ), where y(O) = q
: and yiO) = bk-¢, k > 1. Thus, inequality (A.29) will be true if

s 0 < :E: (u i +u i+u,) + h, < u k2+u k+u for every k > 1 (A.30)
- k,i 3 k— 1 2 37 -

At where hk = fk({ygo)}j After straightforward manipulations, inequality (A.30)

:- becomes

. €1l F Cpuy t Gqug 2 by, k211, (A.3D)
j where ckl’ ck2' ck3, k > 1, are as defined in the proof of theorem 2, where

; h, =1 +a + l)\(m-l)()\(a+ l)b - (1-s.)c + o s.)

- 1 2 m 0 0

33

. b= 21 - Ypk? + 2D e - H-c)k + (bA(BHma) -me + mr_(atc)) (k + SBA(L - 1))
i~ k 2 n 2 n 0 2 m
X + (Brk + 2 (ato)k K> 1

N 2 Q0 0 © 2

ad and where b, ¢ are as defined in theorem 2.

If x» « An(w,B;M,H). then from (A.18) we have that there exist real constants

u'

. ’
.
d

u

é, u,'}, such that ¢, ;ul+4c UL-HkJu% >0 for every k > 15

furthermore
kKl 1 k2

..r.‘.;"r_-.'\.'.‘.- _-(%.;‘.. i, -, CRSCR LR ......‘_ TR
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ulk +u2k+u3>0, k > 1. If we define O sup{nk/(cklu1 k2u2+ck3 3),k21} then 0<O<w,

since hk > 0 for every k > 1, and since

£im (hy /e, jul+e u'l)) <o

erco k117 2" 2 *3Y3
Thus, if we choose u = €] ui, u, = ] ué, and uy = 0 ua, then inequality (A.31) is
satisfied, furthermore u1k2+u2k+u3 >0, k> 1. Thus, system (21) was a non-negative

A

. ) 2
solution {zk}KZO’ such that z0 =0, and 0 < zk < u k +u2 3’ k > 1.
The lower bounds {Zlk2+£2k+£3}k>1 the solution can be established in a

similar manner.
Part (ii)

The proof is parallel to the proof of part (ii) of theorem 2, and is omitted.

Proof of Lemma 2

The process {Z(t), t>0} probabilistically restarts itself at the algorithm
renewal instants, Rn’ n > 1. Thus, it is regenerative with respect to the sequence
{Rn}n>l’ with regeneration cycle coinciding with the LANSA session. The following
is a standard result relating to the regenerative process {Z(t), cgp}

é Lim P(Z(t)=j) = E(amount of tlm? in stategliduqug one session)
£ 200 E(time of one session)

(A.32)

where j=0,1, or 2. Furthermore, if we associate the process {Z(t), Q:O} with the
Poisson arrival process, then it can be shown (see, [18, Thm. 3}) that

Lim P(Z(a )=j) = &im P(Z(t)=j) =7, , 3=0,1,2.
moe n to ]

We now proceed with the evaluation of the limiting probabilities, "j’ j=0,1,2.
Let I, S, and U, denote the expected number of idle, successful, and unsuccessful
algorithm steps over the course of a session. Then, in view of (A.32), and for

A < KO(Q,B;m,H). we have

o= A 1/1; o= (1+1) S/L; 1, = (BR)U/L (A.33)

IS
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where L is the mean session length.

Consider next an arbitrary session induced by the LANSA, and recall that the
sesg@on starts with the marker set to cell #2, and that it ends when the marker
drops to cell #1 for the first time. Since the marker's position is incremented by
m-1, or mtn-1 after each successful, or unsuccessful algorithm step, respectively,

and it is decremented by one after each idle algorithm step, we have that

I =14 (m1l) S+ (mn-1) U (A.34)

Also, since an idle, successful, or unsuccessful step lasts for a, l+a, or B+a vnits
of time, respectively, we have that

L=al+ (1+a) S + (B+a) U (A.35)

Then, using equations (A.34), (A.35), and the fact that § = AL, in (A.33), we find

the expressions of the limiting probabilities given in the lemma.
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Figure 1. Channel activity induced by the LANSA, as perceived by an arbitrary user X.

Slot size =

Packet transmission time

Conflict truncation time

o (maximum propagation

1 (or T
8 (or R

delay) .

dXX represents the propagation delay

1/a slots)
B/o slots)

between user X and user Y.
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ave & .

. ’ LANSA B8 =1 LANSA B =0.5 LANSA B =«
¥
. a X m* n* X m* n* by m* n*
; 0.500 0.3u8 1 4 0.371 1 3 0.371 1 3
: 0.400 0.390 1 4 0.419 1 n 0.427 1 3
0.300 0.442 1 n 0.480 1 n 0.498 1 3
E 0.200 0.510 2 4 0.561 1 n 0.597 1 3
. 0.100 0.623 2 5 0.676 2 n 0.7u3 1 3
ﬁ 0.050 0.723 3 6 0.771 2 5 0.8u9 1 3
- 0.020 0.816 5 9 0.855 n 7 0.931 1 3
é 0.010 0.867 7 12 0.898 5 9 | 0.96u4 1 3
E 0.005 0.904 10 | 16 0.928 7 12 0.981 1 3
l; 0.002 0.938 16 | 24 0.954 11 | 17 0.992 1 3
i 0.001 0.956 22 | 33 0.968 16 | 2u 0.996 1 3

Table 1. The lower bound A on the maximum stable throughput of the LANSA,
and the parameters m* , n* for representative values of the

&6 o u

propagation delay o and the conflict truncaticn time B.
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Upper bound Lu()\), and lower bound LZO‘) on the mean session length L(})

L

A

N a= 0.5 o= 0.1 a = 0.0l a = 0.001

s

A Ig=0.5 |p=1 =0.1]B=1 |g=0.01 =1 B=0.001 | B =1

A L* L* L*"'L* *~* *"’L* *"'L* *"‘L* *~* *"'L*

o T e A R A T 2 IR TR 2N LR RO LS
0.05 | .542186 | .542484) .105836 | .106422| .001053 |.010565 | .001952 |.001053
0.10 | .597494 | .599766) .112458 | .113858| .001112 |.o11200 |.oo1111 |.o001113
0.15 | .675017 | .682702| .120075 | .122636| .001787 |.011918 | .001176 |.001181
0.20 | .793406 | .815925] .128970 | .133235| .012535 |.012739 |.001250 |.001257
0.25 | .998311 {1.066750| .139539 | .146374 ] .013387 |.013688 |.001333 }.001343
0.30 {1.439901 | 1.712785) .152345 | .163195 | .014366 |.014797 |.001429 }|.001443
0.35 §3.077182 |7.018270| .168229 | .185622 ] .015502 {.016115 |.091539 |.001559
0.40 - - .188501 | .217179| .016837 |.017708 |.001668 |.0016%6
0.45 - - .215316 | .265082 | .018429 {.019673 |.001820 {.001859
0.50 - - .252507 | .346803 | .020360 }.022164 |.002003 |.002058
0.55 - - .307594 | .518380 | .022753 |.025427 |.002227 |.002396
0.60 - - 397642 11.111720 | .025796 }.029892 |.002597 |.002623
0.65 - - .571461 - .029797 |.036381 |.002868 [.003043
0.70 - - .047520 - .035291 |.046691 |.003351 }.003626
0.75 - - - - .043310 |.065628 |.004030 |.004492
0.80 - - - - .056113 (.111880 |.005053 {.005909
0.85 - - - - .079806 |.398382 |.006775 }.008658
0.90 - - - - . 138564 - .010279 |.016273
0.95 - - - - .531879 - .021297 1. 141640
} ®
Table 3.
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0.0507
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4400
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0.1u459

0.0824
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0.0756

.4700

0.48u43
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0.1075
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0.1007
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.5000

0.5212

0.2020

0.2029

0.1327

0.1325

0.1257
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.5300
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0.2284

0.2328

0.1578

0.1583

0.1507

0.1510

. 5600

0.2584

0.2637

0.1830

0.1843

0.1758

0.1763

0.2812

0.2960

0.2081

0.2104

0.2008

0.2015

0.3076

0.3298

0.2333

0.2369

0.2258

0.2268

0.3340

0.3653

0.2584

0.2636

0.2508

0.2523

0.3604

0.4029

0.2836

0.2%07

0.2758

0.2778

0.3868

0.4428

0.3087

0.3181

0.3008

0.3034

0.65

0.4132

0.3338

0.3u460

0.3258

0.3292

0.70

0.4396

0.3590

0.3742

0.3509

0.3550

0.38u42

0.4030

0.3759

0.3810

0.4093

0.4322

0.4009

0.4071

0.u43u5

0.4620

0.4259

0.4334

0.4596
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0.4598
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0.4759

0.4864

« " a0
PP PP

Table

iy,




e
o

| \"

L

A M Tt AR S Do A T S A A

-

e e T T T
P RERIPITAPIP B DD IPOP JE Ry -

* *
Upper bound CU(A), and lower bound CQ(A) on the mean contention delay C(}).
L
A
“a = 0.5 o .1 a = 0.01 a = 0,001
N
S
A B=0.5 =1 B=0.1 =1 g=0.01 B=1 B=0.001 B=1
* % * % x % * "C* c C* C*~ C* c*e C* C*~ C*
A Ca® € | G G *C Cu %Gy u 2 u L u L u 2
0.05 1.6240 1.6461 1.1094 1.1207 1.0118 1.0144 1.0023 1.0031
0.10 1.8298 1.8917 1.1273 1.1554 1.0169 1.0235 1.0066 1.0086
0.15 2.1696 2.3101 1.1555 1.2081 1.0260 1.0383 1.0145 1.0181
0.20 2.7534 3.0687 1.1964 1.2852 1.0399 1.0600 1.0264 1.0324
0.25 3.8552 4.6375 1.2535 1.3963 1.05394 1.0904 1.0434 1.0526
0.30 6.3832 8.9758 1.3319 1.5568 1.0858 1.1317 1.0664 1.0788
0.35 J16.1615 - 1.4392 1.7932 1.1208 1.1871 1.0968 1.1162
0.40 - - 1.5870 2.1543 1.1667 1.2614 1.1365 1.1640
0.45 - - 1.7951 2.7405 1.2264 1.3613 1.1881 1.2265
0.50 - - 2.0981 3.7957 1.3046 1.4973 1.2552 1.3088
0.55 - - 2.5644 6.1033 1.4078 1.6868 1.3429 1.4182
0.60 - - 3.3u489 14.3073 1.5462 1.9597 1.4591 1.5660
0.65 - - 4,8955 - 1.7363 2.3735 1.6160 1.771383
0.70 - - 9.1909 - 2.0071 3.0535 1.83u3 2.0676
0.75 - - - - 2.4143 4.3357 2.1512 2.5213
0.80 - - - - 3.0799 7.5258 2.6421 3.2834
0.85 - - - - 4.3337 27.5038 3.4848 4.7887
0.90 - - - - 7.4811 ~ 5.2257 9.0118
0.95 - - - - 28.6961 - 10.7536 | 79.0137
Table 5.
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: o G-LANSA (rule 3") B =a
a i m* m* nk P*"'E*
0.500 0378 { 1 | 1 1 |0.32
0.200 0.625 1 1 1 0.34
0.100 0.777 1 1 1 [0.35
0.050 0.877 | 1 | 1 1 |o0.36
0.020 o9u7 | 1| 1 1 ]0.36
0.010 0.973| 1| 1 1 |o.3
0.005 o.985 ) 1] 1 1 | 0.3
0.002 0.993 1 1 1 0.37
0.001 0.996 | 1| 1 1} 0.37

Table 7. The lower bound X on the maximum stable throughput
of the G-LANSA (rule 3"), and the parameters m* , m* ,
n* , p* , p* for representative values of the propa-
gation delay o and for 8 = a.
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